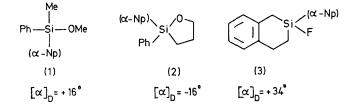
Nucleophilic Substitution at Silicon: Evidence for a Parallel with Addition Reactions to α,β Ethylenic Ketones

By R. J. P. CORRIU and C. GUERIN

(Laboratoire des organometalliques, U.S.T.L., 34060, Montpellier Cedex, France)

Summary The relationship between the stereochemistry of nucleophilic substitution at Si-O and Si-F bonds and the electronic character of the attacking nucleophile (Bu¹₂AlH, LiAlH₄, LiAlH₄-4CuI, EtLi, EtMgBr, and Et₂CuMgBr) has been studied; those reagents which favour 1,2-addition to α -enones react with retention of configuration, whereas those which favour 1,4-addition to α -enones react with inversion.

COUPLING reactions of various organometallic reagents (RLi, RMgX, RNa, LiAlH₄) with optically active silicon compounds have been studied previously;^{1,2} it was shown that the stereochemistry of nucleophilic substitutions at


TABLE 1. Attack by nucleophiles on compound (1).

Nucleophile	Solvent	$[\alpha]_{\mathbf{D}}$ of product	Inversion or retention
Bu ¹ 2AlH ^b	Hexane	$+34^{\circ} +30^{\circ} -4^{\circ}$	100 % retn.
LiAlH4 ^c	Et₂O		94 % retn.
LiAlH4—4CuI	THFª		55 % inv.

^a The product in all cases was MePh(α -Np)SiH. ^b See ref. 3. ^c See ref. 1. ^d THF = tetrahydrofuran.

silicon depends on the electronic character of the nucleophile. This hypothesis was confirmed by comparing the behaviour

of some nucleophilic reagents in addition reactions with α -

enones and in substitution reactions at silicon. Compounds $(1), 1, (2), 2^{2e}$ and $(3)^{2a}$ were used in this study. The results are summarized in Tables 1 - 3.

TABLE 2. Attack by nucleophiles on compound (2).

Nucleophile	Solvent	[α] _D of product	Inversion or retention ^b
Bu ⁱ ₂ AlH	Hexane	$+19^{\circ}$	Retn.
LiAlH₄	Et_2O	$+13^{\circ}$	Retn.
LiAlH ₄ - 4CuI	THF	-18°	Inv.

^a The product in all cases was $Ph(\alpha \cdot Np)(H)Si[CH_2]_3OH$. ^b Compound (2) is a liquid and has not been obtained optically pure, so its maximum $[\alpha]_D$ value is not known. Hence, % retention or inversion values cannot be given.

In all cases, those reagents $(Bu_{2}^{t}AlH_{4}, {}^{6}RLi^{7}RMgBr, {}^{8})$ which favour 1,2 addition to α -enones (chargecontrolled process⁹) react with retention of configuration at

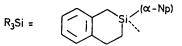


TABLE 3. Attack by nucleophiles on compound (3).

Nucleophile	Solvent	[α] _D of product	Inversion or retention
Bu ⁱ 2AlH	Hexane	$+21^{\circ a}_{0^{\circ a}}_{-16^{\circ a}}$	100 % retn.
LiAlH4 ^b	Et₂O		Racemic
LiAlH4–4CuI	THF		80 % inv.
EtLi¢	Et₂O	+114°d	96 % retn.
EtMgBr⁰	Et₂O	+27°d	61 % retn.
Et₂CuMgBr	Et₂O	-84°d	84 % inv.

^a Product was R₃SiH. ^b See ref. 4. ^c See ref. 2b. ^d Product was R₃SiEt. ^e See ref. 2a.

silicon, whereas those reagents (LiAlH₄-4CuI, ¹⁰ R₂CuMgX¹¹) which give predominant 1,4 addition (frontier-orbital controlled process⁹) react with inversion of configuration.[†] These results agree with our hypothesis on the change of stereochemistry with change in the electronic character of the attacking nucleophile with the same silane; hard nucleophiles prefer to attack equatorially at silicon according to a charge-controlled process, and softer reagents axially according to a frontier-orbital controlled process.

(Received, 12th October 1976; Com. 1156.)

 \dagger Cyclopent-2-enone undergoes 99% 1,2-addition with Bu¹₂AlH (ref. 5), 63% 1,2-addition with LiAlH₄ (ref. 6), and does not react with LiAlH₄-4CuI; PhCH=CHCOMe undergoes 100% 1,2-addition with Bu¹₂AlH and LiAlH₄, and 100% 1,4-addition with LiAlH₄-4CuI.

¹ L. H. Sommer, 'Stereochemistry, Mechanism and Silicon', McGraw Hill, New York, 1965. ² (a) R. Corriu and J. Massé, J. Organometallic Chem., 1972, 35, 5; (b) *ibid.*, 1972, 34, 221; (c) R. Corriu and G. Lanneau, Bull. Soc. chim. France, 1973, 303; (d) R. Corriu and G. Royo, *ibid.*, 1972, 1490; (e) R. Corriu, C. Guérin, and J. Massé, J. C. S. Chem. Comm., 1975, 75.

³ L. H. Sommer, J. McLick, and C. M. Golino, J. Amer. Chem. Soc., 1972, 94, 669.

⁴ R. Corriu and J. Massé, Bull. Soc. chim. France, 1969, 3491.
 ⁵ K. E. Wilson, R. T. Seidner, and S. Masamune, Chem. Comm., 1970, 213.

- ⁶ H. C. Brown and H. M. Hess, J. Org. Chem., 1969, 34, 2206. ⁷ T. Eicher, 'The Chemistry of Carbonyl Compounds', Ed. S. Patai, Interscience, New York, 1966, pp. 624-631.
- ⁸ M. S. Karasch and O. Reinmuth, 'Grignard Reactions of Nonmetallic Substances', Prenice-Hall, Englewood Cliffs, New Jersey, 1954, pp. 196-239; H. O. House and W. F. Fisher, J. Org. Chem., 1968, 33, 949.
 ⁹ O. Eisenstein, J. M. Lefour, C. Minot, N. T. Anh, and G. Soussan, Compt. rend. (C), 1972, 274, 1310.
 ¹⁰ E. C. Ashby, J. J. Lin, and R. Kovar, J. Org. Chem., 1976, 41, 1939.
 ¹¹ H. Rivière and P. W. Tang, Bull. Soc. chim. France, 1973, 2455.